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GEOMETRY OF MANIFOLDS OF MAPS

HALLDOR 1. ELIASSON

Introduction

The main purpose of this paper is to lift differential geometric objects from
two manifolds N and M to a Banach manifold &(N, M) of maps from N to
M. To give an explicit construction of such objects, it seems to me, is funda-
mental for analysis on these manifolds. Moreover, we are able to prove
existence where conventional methods fail, because of the lack of smooth
partitions of unity on many Banach manifolds of maps as e.g. C¥(N, M).

The general setting for manifolds of maps is as follows (§4) : N is a compact
Hausdorff space of class C with a countable basis 0 < r < o (C7-manifold
for r > 1), W is a full subcategory of the category B of Banach spaces closed
under the operations of taking direct sums and continuous linear maps.
VB(N, A} is the category of vector bundles of class C” over N with fibres in
9. & is a section functor, which is a manifold model, t.i. & is a covariant
functor from VB(N, %) into B s.t. S(E) is a Banach space of sections in
E for any Ec< VB(N, %) and as a manifold model & has the following
three properties : we have continuous linear inclusions &(F) < C%E) and
SLE, F)) C L(&(E), &(F)) and the map of section spaces induced by
Cr-fibre maps via & is continuous. We then prove differentiability and give
an explicit formula for the derivatives (Lemma 4.1). This is the fundamental
lemma for most of the following constructions.

Then (§5) M is a Banach manifold of class C”*%, s > 3, admitting a con-
nection of class C***~* and modeled on . we then construct a C*~2Banach
manifold &(N, M) of maps. We follow the idea in [3] to use the exponential
map for the construction of a chart in a neighborhood of a C*-map #: N —
M using S(h*TM) as a model.

This axiomatic setting is slightly more general than in Palais [5], where
N, M are finite dimensional of class C~, so we have included more of the
known examples due to Eells [3] as e.g. C%(N, M), where N is some space
as above (r = 0). Moreover it is important to allow M to be infinite dimen-
sional, for & = C¥, this has already been worked out, Abraham [1]. Further-
more, the axioms for a manifold model are slightly more general. The
fundamental difference, however, lies in the fact that we start globally on
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vector bundles and use only differential geometric objects and structures from
N and M to carry through the constructions.

We then proceed to the proof, that the tangent bundle of &(N, M) can be
identified with &(N, TM) in a natural manner and that a map §: M — M’ of
class C™**~? induces by composition a map &(6): SNV, M) — SN, M’) of
class C*-* and T&(§) = &(T6). Our main result is Theorem 4.5, where we
prove that a C™"*~*-connection on M induces a canonical connection of class
Cr=* on &(N, M), such that if exp denotes the exponential map for M, then
& (exp) is the exponential map for &V, M). This implies that if N, M are
of class C* and M admits a C~-connetion, then the C-manifold C*(N, M)
admits a connection of class C*. We then have the iterated manifolds of maps
CY{N, C*(N, M)) etc. Note that here a C* connection cannot be constructed
using C* partitions of unity, as they do not exist (see [4] for references).

In §6 we construct vector bundles over &(N, M) and bundle maps between
those. Let 2: 9 X A — U be a functor of class C* and 1 the induced opera-
tion on VB(N, %B), T a section functor such that we have a continuous linear
inclusion S(L(E, F)) C L(Z(E), $(F)). Let £< VBN, A) be given. We then
prove that the domain of definition for ¥ can be extended as to define
L(Ay(E, f*TM)) for all fe S(N, M) and the union of these Banach spaces is
a vector bundle T(Ay(E, SN, My*TM)) over &(N,M) oi class C*-*. In par-
ticular, we have the bundles &(1y(S(N, M)*TM)), which are just lifts of the
tensor bundles over M with obvious lifts of sections (for 2 = id we have the
tangent bundle of &(N, M)). The importance of this lies also in the fact that
we usually have to consider weaker variations of mappings than those obtain-
able through manifold model sections.

In Theorems 6.2-6.4 we give sufficient conditions, that the tangent extends
to a section ¢ in T(L(TN, SN, M)y*TM)) of class C*~*(r > 1) and that a
covariant differentiation in TN(r > 2) and TM induces sections in

LELHTN, SN, My*TM)), T,(L(TN, SN, M)*TM)))

k > 0 of class C*~*. This has immediate applications to the chain C°, C, . - -
of manifold models. However, the most important applications will be to the
Sobolev chain H°, H*, - - -, H* (2k > dim N). I do not give any applications
to H*(= L}) here, but I intend to prove in a later paper that the k-th order
energy function E, : H*N, M) — R, N and M compact without boundary,
satisfies condition C of Palais and Smale (see [4] for references).

The above bundles and bundle maps form a natural setting for the study
of partial differential equations for maps N — M.

The first three sections are of a preparatory nature. In §1 we introduce
connection for vector bundles via the connection map and compute canonical
connections for the associated bundles of direct sums and linear maps. In §2
we define the covariant derivative of a section in £ N as a section in
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L(TN, E) and so on for higher derivatives using the induced connection. We
furthermore observe that this covariant differentiation has properties similar
to the usual differentiation in Banach spaces.

In §3 starting from a manifold M with connection, we define a certain
induced connection for the total space TM of the tangent bundle and investi-
gate the properties of the corresponding exponential map, which is to be used
to obtain canonical charts for &(N, TM). This connection may be character-
ized by the fact that the geodesics in TM are exactly the Jacobi fields along
geodesics in M. We furthermore analyze the two first (covariant) derivatives
of the exponential map for M, as we will need those for the construction of
canonical local trivializations of our vector bundles over S(N, M). The general
reference here is [2] and [6]. The Jacobi connection mentioned above has
also been constructed by J. Vilms [7].

1. Connection in vector bundles

Let M be a Banach manifold of class C*, k£ > 1, with boundary M. A
chart for M is given by a diffeomorphism ¢ : U — gU of class C*, where U
is open in M and ¢U is open in My ={xeM: 2-x >0}, M is a Banach
space and 1 a functional on M. dU C 8M is then given as the inverse image
of 3¢U = ¢U N M3, M} = {xe-M: i-x =0} (see [6]). The restriction ¢|oU
gives a chart of class C* for the manifold M. The tangent of ¢, Tg: TU —
éU X M gives a chart for the total space TM of the tangent bundle r : TM
— M. We have a C¥~? section ! in L(TM|6M, R) given locally by the func-
tionals, such that ker [ = T9M and a vector ve T ,M, pcdM, is tangent to
M iff I(p) -v > 0, in the sense that we have a curve c: [0, 1] — M of class
C? with 9,(0) = ».

Let z: E— M be a vector bundle of class C7, 1 < r < k. A local triviali-
zation for z is given by a bundle equivalence:

Q. (U)—¢U X E
l l
é: U —-g¢U

where ¢ is a chart for M and E a Banach space. With £¢ E, = z-'(p) we
have @(&) = (¢(p), (&), where @,: E,— E is a toplinear isomorphism.
Given another local trivialization by (V, ¢, ¥), we will define the transition
map by :

Gu: d(UNV)— L(E, E); Guy(x) =T, 0 D%,

with x = ¢(p). G, is then of class C*. E is a Banach manifold of class C~
(with boundary) so the tangent bundle =, : 7E — E is of class C*~!. The tan-
gent of = is a bundle map Tz: TE — TM of class C"~* and we see immediately
from the local formulas
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Todi(x, §) = (pod7(x), Gypl) - &),
TE o0, & 7, 9) = (¢ 0 $7(%), Gyy(x) - & D(fod™)(x) - ¥,
DGy (x) - (7, 8) + Gu(x) - 7,

that we can introduce vector space structure in the fibres of Tr (locally Tx
maps (x, §, ¥, p) to (x,¥)), to give Tx: TE — TM a vector bundle structure
of class C™1.

Definition. A connection map K for the bundle E is a map K: TE - E,
such that for any local trivialization (U, ¢, @) of #: E — M, there is a map
I',: ¢U— L(M, E; E) of class C™-!, which gives the local representative of
K,K,= @-K-T®" by the formula :

K(x, &y, D=0, 9+ 1,x)- ).

It follows of course that K is of class C"~?, but not conversely. We call [,
the local connector for K and we will sometimes drop the suffix ¢, if the
local trivialization is fixed. In the case E = TM, r=k — 1, we have G, =
D(¢o¢~") and the local connector corresponds to the classical Christoffel
symbols, t.i. in the finite dimensional case we have in coordinates:

') - 0, D) = 25(x)y7zx .

Using the formula for 7(¥ - &) above we get the following transformation
formula for the local connector :

Lyx) - 0,8 = G0 97()) - [DGy(x) - (7, &)
+ Ly($og7(X) - (D(G267)(F) - ¥, Gyy(x) - )]

Thus the required properties of the local connector are invariant under
change of trivialization. It follows furthermore, that if M admits partition of
unity of class C"~%, then there exists a connection map for z.

We have two subbundles ker Tz and ker K of n,, as T and K are both
C7-! surjective bundle maps with splitting kernels (see {6]). We have moreover
an isomorphism ker Tx= @ ker K = «, by (4, B) -~ A + B. For this splitting
of #, and later for covariant differentiation of sections we need our assumption
on the “strong™ differentiability of the conmection, t.i. we are not satisfied
with the weaker assumption that K or equivalently (x, ¥, &) — I'(x) - (3, &) is
differentiable. A connection wtth this “weaker” differentiability is equivalent
to a spray as defined in Lang [6] and suffices to introduce geodesics and the
exponential map. Note that the map (=, Tn, K): TE-EDPTMDE is a
C! diffeomorphism.

Let ¢ : [0, 1] — E be a C'-curve in E. We denote by e the basis section of
TR=R X R, e(t) = (t,1). Then da = Ta o e is the tangent field of « and
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the covariant derivative of ¢ is defined by Fa = Kode. We call ¢ parallel,
if Fa = 0. If @ is given in a local trivialization by (¢, @), then P« is given by

(;a’ + (F °c)- (C’, a)) -

It follows that if ¢ : [0, 1] — M is a given C'-curve and £¢ E_,,, then there
is a unique parallel curve ¢ in E with = ca = ¢ (or parallel field along ¢) and
a(0) = £. In the case E = TM, Fdc = 0 is the equation for a geodesic in M
and there is a unique local solution with d¢(0) = v, for a given v tangent to M.

We will now show that the category of vector bundles over M admitting a
connection is closed under the operations of taking direct sums and linear
maps.

Lemma 1.1. Letn: E— M and p: F — M be vector bundles over M, of
class C7, then there is a natural bundle equivalence T(r® p) = Ta@®Tp, given
locally by an identity.

Proof. Let (A, By e TE @ry TF, Tr(A) = Tp(B)=v. Let c(f) be a
C'-curve in M with 9¢(0) = v and «, 8 any fields along ¢ in E, F with 9(0)
= A, 35(0) = B. Define 7(t) = (a(t), p(?)) and let (4, B) = 9y(0). This is
_easily seen to be an identity in a local trivialization using tangent charts.

Proposition 1.1. Let K, K, be connection maps forw: E—Mand p: F
— M, then K. @ K, is a connection map for t®@p: E®QF - M. In a local
trivialization the local connector

I, U—>LWM,EX F; EXF)
is given by
LX) -0, & ) =Ux) 0,8, ,x-0, 7).

Proof. We use here the identification from Lemma 1.1 and the Proposi-
tion follows from the local formula, which is evident. q.e.d.

Given two bundles z: E— M, p: F— M, we have the bundle L(z, p):
L(E, F)— M of bounded linear maps of fibres: L(E, F), = L(E,, F,). We have
moreover a bundle L(z*r, Tp): L(<*E, TF) — TM, with fibre L(<*E, TF),
= L(E,,, T,F), T,F = (Tp)"*(v). Here t*z: t*E — TM is the pull back of
z: TM — M, ti. (*E), =E_,,. Let (U, ¢, @.) and (U, ¢, @,) be local trivi-
alizations for = and p, we then have induced trivializations :

Q)L(mp) : L(x, P)_l(U) - ¢U X L(E, F),

@L(z,p)p(A) : E = @.DP(A " d)-_pl(g))a Ae L(Ep> F?))’ E € Ea
Drirerrpy 2 Le*m, To)"(U) —» gU X M X L(E, F X F),
(DL(.-t.-.,Tp)v(A) . E = P(Td),o(A ’ d):_;(g))) ’

where
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P('x’ 57 y: 77) = (5: 77)’ AeL(E;H TUF)5 p = Z'('U)-
Then
¢L(:*zy Tp)(A) == (T¢('D), @L(r“:, TP)U(A)) .

Lemma 1.2. Let K be a connection map for = : E— M, then there is a
canonically induced bundle equivalence :

TL(E, F)~X) L(*E, TF)
TL(=, o) | | L*a, To)
™ = T™

In a local trivialization, L(K) is given by
L(K);S(x’y:A’B)Z (X, Y, A,B—A'F(X)‘()’, '))'

Proof. We will first define L(K) intrinsically and then show that it has
the required properties by writing it down locally. Let W e TL(E, F) and put
v = TL(z, p)(W), p = =(v). Assume W, v are tangent and let ¢ be a C'-curve
in M with 6¢(0) = v and 8 a field along ¢ in L(E, F) with 38(0) = W. We
have to define L(K)(W) as a linear map £, — T,F. Let £¢ E, and « the par-
allel field along ¢ with «(0) = &. Put y(¥) = A(?) - «(?), then 7 is a curve in F.
We define L(K)(W) - & = 37(0). To compute this in a local trivialization, let
TP, . (W)= (x, A, B), then ¢(p) = x, T¢(¥) = (x, ¥). Put @_(§) = (x, n)
and let ¢, B, @ be the principal parts, then ¢(0) =x, 8(0) = 4, a(0) =7,
¢'(0) =y, /(0) = B. We have §,0y = (¢, B @) and

T¢,°01(0) = (x, A-5,y,B-np—A-I'(x)-(, 7))

as &'(t) + I'(e(?) - (¢'(?), a(t)) = O, where I” is the local connector for K. We
have then proved the local formula which shows that L(K) is well defined and
gives a bundle equivalence.

Proposition 1.2. Let K_, K, be connection maps for the vector bundles
n:E—-Mand p: F>M. Then K, , = L(z, K,) o L(K,) is a connection map
for L(r, p): L(E, F) - M. In a local trivialization the corresponding local
connector is given by

Iyt 0U— L(M, L(E, F); L(E, F)),
im0, D] -§=T,(x)- (3, 4-§) —A-T.(x)- (5, 6).

Remark. Here L(z, K,) : L(-*E, TF) — L(E, F) is defined by

Lz, K)(A)-§ =K(4-§).



GEOMETRY OF MANIFOLDS OF MAPS 175
Proof. Using Lemma 1.2, we have in a local trivialization :

K.},(ﬂ‘p)¢(x’A5 Y, B)'5=Kp¢(x,A'5, y,B'é_A'P:(x)'(ya 5)) .
=xB-§—~A4-I'(x)- 0,8+ () -00.4-8).

Obviously I"y,.,,, is of class C™* if I", and [”_ are.

2. Covariant differentiation in vector bundles

We will assume that we have a connection on M, t.i. a connection map K,
for the tangent bundle - : TM — M. Furthermore, let = : £ — M be a vector
bundle with connection map K,. If £ is a differentiable section in z, we will
define the covariant derivative of & to be the section in L(z, z) : L(TM, E) —
M defined by

Vf(p) =K. oT,§, T,§ =TE|T M.
In a local trivialization we have
VEX) -y =DE&x) -y + I' (%) - (¥, §()) ,

where we have used the same letter for the principal part and I”, is the
local connector. If & is of class C¢, then F& is obviously of class C*~! for
1 < s <r—1, where r is the class of E as before. We then define higher
order covariant derivatives inductively, using the induced connection on
Ly(TM, Ey =L({ITM, L--Y(TM, E)) by Proposition 1.2. Here the connection
on M is needed. So F£ is a section in Li(z, ). Let p: F—M be another
vector bundle of the same class as = and A, § sections in L(z, p), z. We then
define a section A - £in p by (4 - &)(p) = A(p) - &(p). If &, X are sections in
z and r, we will call ¢ - X the partial derivative of & in the direction X; it
is again a section in =. In the case = = z, we have the classical covariant
differentiation of vector fields.

Lemma 2.1. (i) Let = and p be vector bundles over M with connection
and give L(z, p) the induced connection. Then for any sections A, & in L(r, p)
and = of class C*, we have

V- =VA4-(-,8 +4-F¢.

(il If = is a bundle of class C™ with C'~* connection there is a C"~* section
R in L(z, z, m; &), such that for any sections X,Y in ¢ and & of class C*in
w, we have

Vzé(X,Y)—VZE(Y,X)=R(X,Y,E).

In any local trivialization we have
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R(x)-(y,z, E):DF(X)-()’, z, E) ——DF(.X)'(Z, Y, E)
+ LX) 0, I(x)-(2,8)) =T (®) @z '(x)-(7,8).

Remark. In fact this is a generalization of the classical curvature tensor,
so we may keep this name for R. In the formula above I" = I, is the local
connector for z.

Proof. We have only to write this down in a local trivialization and use
the formula in Proposition 1.2 for the local connector of L(x, p) and L(z, x).

Using the same formula we get easily

Lemma 2.2. Let R, R, be the curvature tensors for bundles r and p over
M with some connections, and take the induced connection for L(x, p). Then
the curvature tensor for L(z, p) is given by the formula

RL(x,p)(p) ’ ('U, u, A) N EZRp(p) . ('U, u, A- 5) —A- Rr(p) * ('U, u, S) >

forv,ueT ,M,écE,, AecL(E,, F,).

Let r: E— M, p: F — M be vector bundles with connection maps K, K,
and let f: E — F be a fibre map, t.i. pof = x. We then define the covariant
derivative of f as a fibre map:

Vf: E-LIM®E,F)
by
Vi&) - (@, 9) =K, Tfo(x, Tx, K))7'(&, v, 7).
In a local trivialization, we get easily the expreséion

Dif(x, &) -y + Dof (x, &) - (9 — I',(0) - (0, 8)) + [,(x) - (0, f(x, &)

for the principal part, which shows that /f(§) is in fact a linear map: T,M
@ E, — F, for £ e E,. Moreover it reveals, that if we split F'f in the obvious
manner into V,f: E—L(TM, F) and V,f: E—L(E, F), then V,f(§) = Dfy(£),
where f, = f|E, (note that f,: E, — F, is a map from a Banach space into
a Banach space). We will therefore feel free to write D,f instead of ,f. Using
the local formula above the following is easily seen :

Lemma 2.3. Let f: E— F be a differentiable fibre map and & a section in
E, then we have

V(feo&)(p) = V.f(6@)) + D:f(5(p)) e V(D) -

These formulas show us that covariant differentiation behaves very much
alike ordinary differentiation in Banach spaces. We will now see how it be-
haves under pull-backs.

Let M, M’ be Banach manifolds of class C* as before and let =: E— M’ be
a vector bundle of class C7, 1 < r < k, with a connection map K’: TE — E.
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Let h: M— M be a map of class C". Then the pull-back A*r: h*E —
M, (h*E), = E,,, is a bundle of class C*. If (U, ¢) is a chart for M and
(V, ¢, ¥) a local trivialization for z, such that A(U) C ¥V, then we can define
a local trivialization for h*z by

@ : h*E|U —gU X E; 0(;) = (9(); ¥ rnn(€n) »

where E is the fibre model for = in the given trivialization.

We now define a connection map X for h*z by ioK = K’ oTi, where
i: h*E — E is the inclusion. This defines K uniquely as i is an isomorphism
on each fibre.

For the local connector we get

I'@x) - (0, 8) = I'"(hx)) - (Dho(x) - 7, §)

where [ is the local connetor for = and A, the local representative for 4. We
can regard the tangent of 4 as a section 04 in L(z, A*7’) by dh(p) - v = Th(v).
The sections in A*x are in a class preserving one-to-one correspondence with
the fields along A, t.i. maps £ : M - Es.t. 10& = h and we will identify
those. A section X in = induces a section #*X = X o A in A*z and it follows
easily from the above local formula for the connectors that

Y (H*X) = R’ X) - ok,

where h*F’, 7’ denote the covariant differentiation in #*z, z. Now let M be
with connection and let /' = A*’ denote the covariant differentiation over M.
Then 75k is symmetric bilinear on each fibre, so by using Lemma 2.1 (i) and
(i) for the curvature tensor R, of h*z we get

Ry, w,u,&) =(R'oh)-(0h-v,0h -u, ),

where R’ is the curvature tensor for z.

Remark. We have constantly assumed the connection for a manifold to
be symmetric (without torsion) t.i. the local connector is a symmetric bilinear
map at each point. This is no restriction on existence.

3. Connection in iterated tangent bundles

Here M is to be a Banach manifold of class C¥, ¥ > 2, without a boundary
and with a connection map K : 7°M — TM for the tangent bundle . We will
assume that the connection is symmetric. We define a map K, : T°M — T°M
through the properties :

Krl: z,0Krp=1,07,, K72:T70Ky=KoTr,
Ki3: KoKy =KoTK — Ro(Tz 0T, 7,077y, 7,0 T7) .
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Here z;: T¢*'M — T?M are the iterated tangent bundles and R is the curva-
ture tensor, defined as a section in LTM, TM) in Lemma 2.1, but considered
as a trilinear bundle map R : TM @ TM © TM — TM here. We have observed
that (¢,, Tz, K) is a diffeomorphism, so K is uniquely defined by those pro-
perties.

Theorem 3.1. The map K, is a connection map for the vector bundle
7,: T°'M — TM and gives the manifold TM a symmetric connection of class
Ck=3 In any local trivialization induced by a chart (U, ¢) for M, the local
connector for Ko, I'p: U X M —L(M X M, M X M; M X M) is given by
the formula

I'z(x, ¥) - (21, 29, 1, 6)) = (T'(®) - (21, &), DI'(%) - (0, 25, §)
+ F(x) : (Zza 51) + F(x) * (zl: Sz)) ’

where I is the local connector for K.

Proof. We have only to prove the local formula which is a simple compu-
tation, using the formula for the curvature tensor from Lemma 2.1. I’y is
obviously of class C*~® as I is of class C*2.

We will denote by 7, the covariant differentiation in vector bundles over
TM, uvsing the connection map K, for the tangent bundle of TM and by I as
before the covariant differentiation over M. A field « along a curve ¢ in M is
called a Jacobi field, iff

PP + (Roc)-(a,dc,8c) = 0.

Theorem 3.2. A curve « of class C* in TM is the geodesic (V y0a = 0) in
TM with 0c(0) = w, iff « is the Jacobi field along the geodesic ¢ = toa in M
with 6¢(0) = Tz(w), a(0) = z,(w) and V a(0) = K(w) .

Proof. 1) Suppose « is a geodesic in TM: Frpda =0, 0a(0) = w. Then
we have for c = r o, 3¢ = Tcce = Tt 08a, $0 3¢(0) = Tr(w») and

Voc=KoTdcoe=KoT*rcTd0¢toe=TroKs00°a¢ =TroFrda =0.
Furthermore, Fa = K o 6« and then

FP’a = KoT(Koda)ce = (KoKy + Ro(TtoT%c, 70Tty 7,0 T20)) 0 0%
= Ro(dc, &, 8¢) = — Ro(a, dc, dc),

which, together with V00 =0 and Troda =T(roa)oe=0dc, t,0a = c,
7z odc = ¢, proves that « is a Jacobi field along ¢. We have a(0) = 7, o 6a(0)
= 7(w) and Fa(0)= K - 3a(0) = K(w).

2) Now suppose « is a Jacobi field along the geodesic ¢ = r o & and put
o = (7,, T7.K) " («(0), 3¢(0), Fx(0)). Then we have
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Kolr00 = K oKy 0 3%
=(KoTK —Ro(TcoT, z,0T7y, t;0T%)) 0 3%
= F? — Ro (dc, ®dc) =0,
TrolVpda=TroKpod’a=KoTx 0o Toxo e
=KoTdcoe=Fdc=0.

Now as ker K N ker 77 = 0, we get V;0c = 0. Moreover from K o da(0)
=V a(0) = K(w), Tz o 8a(0) = 9¢(0) = Tz(w) we get 0e(0) = w. g.e.d.

We have now to investigate the exponential maps exp, expy corresponding
to 7 and P, for later use. Moreover we have to analyze the two first deriva-
tives of exp. The general reference on local existence, uniqueness and differ-
entiability of flows in Banach manifolds is Lang [6].

There is an open neighborhood & of the set of zero vectors in TM and a
map exp: @ — M of class C*2, if the class k£ of M is > 3. We have exp v
= ¢(1), where c is the unique geodesic c: [0, 1] - M with dc(0) =v. @ is
the set of v e TM such that ¢ is defined on the unite inverval, then ¢(f)= exp tv,
0 < ¢ < 1. We define the covariant derivative of exp :

Fexp: O@QTMEOTM - TM
by
7 exp = T exp o (c;, Tz, K)?,

which is then a map of class C*~2.

Theorem 3.3. Let ved, and u,weT,M. Let c(t) =exptw and Y the
Jacobi field along ¢ with Y(0) = u, F'Y(0) = w. Then

YO =VFexp(@r,u,tw), 0<r<1.

Proof. Let b: [0, €]— M be a curve of class C* in M with 3b(0) = u and
8 a field of class C*~* along b with 38(0) = v and FB(0) = w (e.g. geodesic
and Jacobi field). Put «(z, 5) = exp (¢8(s)). Then we have

d.a(t, ) = V exp (¢8(s), 9b(s), tF B(s)) ,
V.0, = V0,
Vit = V¥ 01 + (R o) - (9, Oy, 0,2) .

The last formula follows from Lemmas 2.1 and 2.2, if we think of 9« as a
section in the pull-back a*r, introduce partial derivatives in the obvious
manner and make use of the formula for the pull-back of the curvature tensor.
Now as F,8,a = 0, it follows that ¢t — a(¢, 5) is a Jacobi field for all s, and
the theorem then follows for s = 0 as «(Z, 0) = c(t), 9,2(0, 0) = 3b(0) = u,
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V,0,2(0, 0) = F5(0) = w. The theorem and this variation of geodesic through
geodesics with Jacobi fields as variation field is well known in differential
geometry, at least for u = 0.

Define 0 = (z,, Tz, K) ¢ (T7, 7, K) : T°M — T°M, locally we have a,(x, ¥, §, %)
= (%, &, ¥, ). Combining the two last theorems we obtain

Corollary 3.1. expr=Texpoo.

We define the second covariant derivative of exp

Frexp: 0@ (@ TM)—-TM
by

Vz exp ('U, u: w’ EO7 Ela Ez; 53)
= K(TVCXP(A(’U, EO; E])7 A(H, an EZ); A(W, Em 53))) 2

with 4 = (z,, Tr, K)~*. We have here used the identification in Lemma 1.1
of the tangent of a direct sum with the direct sum of the tangents.

Theorem 3.4. Letved, u,w, 5,8, &, §&eT ,M. Put c(t) = exptv, Y,()
= F exp (tv, u, tw), Y, () =V exp (v, &, t&,). Let Z(t) be the solution of the
initial value problem :

F*Z + (R o c) - (Z, dc, bc) = % (R o ¢) - (3¢, ¢, Ys, Ya)
+ %(VR 0 ¢) - (3¢, dc, Yy, Y,) + 2(R o ©) - (3¢, Yy, T'Yy)

+ 2(R © C) ° (aC, Yl’ VY‘Z.) s
with Z(0) = &, VZ(0) = &, + R(p) - (v, &, u). Then
Z(t) = VZ exp (tv, u7 tw9 EO) t515 52, IE?.) .

Proof. Let b: [0,¢] — M be a Ck-curve with 8b(0) = &, and $,, 8, B;
Cr-*fields along b with 8,(0) = v, 8,(0) = u, B(0) =w and Fg(0) =&,
i=1,2, 3. We put

a(t, s) = V exp (15:(s), Ba(s), 1£:(s)) -
Then
Vooe(t, s) = V* exp (28:(5), Bu(5) t8:(5), 8D(s), 1V B.(s), V Bo(S), tV Bs(5)) -

With a(z, s) = 7 o (2, s) = exp (¢5.(s)), we have by Theorem 3.3, [ix =
— (Roa) - (a, 9,4, d,a) and then

VlV2a - VZVIa + (R ° a) ) (ala, aza, a) ’
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Vi =V + (Roa)- (8.4, 0,a, Vi) + V(R © a) - (8,4, 8,0, «))
= — (FR o a)(3,4, o, 0,a, 0,a) + TR o a) - (9,4, d,a, 9,a, )
+ 2(R s a) - (9,a, 0,a, Vo) + 2(R < a) - (3,4, a, V,8,0)
— (Roa) V., 0,0, 0,9) .

We have used Lemma 2.1 for the covariant derivation and -Bianchi’s first
identity for the curvature temsor (the cyclic sum is zero). Using Bianchi’s
second identity for the covariant derivative FR (the cyclic sum in three first
variables with the fourth fixed is zero) together with the first, we get

FPR-(x,y,v,v)=FVR-(@, 5, x,v) +FR-(x,v,,7)
=VR-(,v,x,%) +VR-(v,5,v, x)
-VR'(x’yavav)a

s02FR-(x,y,v,v)=VR-(v,v, x,¥) —VR - (v, v, ¥, x). It now follows that
Z(t) = V,a(t, s) satisfies the differential equation for Z for all s, with¢, ¥, ¥,
replaced by a, «, 8,a. But « and d,a are Jacobi fields in ¢, for fixed s, and
take the initial values of ¥, and Y, for s = 0; moreover Z,0) = V3,(0) = &,
and FZ,(0) = 7/,7,(0, 0) = F80) + R(p) - (8c(0), Y(0), Yi(0)) = &, + R(p)
- (v, &, u). Then by uniqueness Z, = Z. q.e.d.

It follows from the differential equation for Jacobi fields that V' exp (v, u, w)
is linear in (u, w), so we have a splitting :

V exp (v, u, w)y =V, exp(v, u) + Vyexp (v, w).

Sinlﬂarly we see that VZ exp (vy u, w, 505 515 525 53) iS li_ﬂear in (L{, w, &25 &3)5 SO
after the obvious definitions, we have

7 €Xp W, u, w, &, &, &, &) = VV] €Xp (7)5 U, &, &1, &)
+ PV, exp (v, w, &, &, &) .

Moreover putting w = &, = 0 and u = &, = 0 respectively in the differential
equation for Z in Theorem 3.4 we see that the first and second terms on the
right hand side above are linear in (£, &, &,) and (&, &, &) respectively.
Therefore

PV, exp (v, U, &, &, &) = i VViexp (W, u, &),
VVyexp (0, w, g, 72, 75) = 23, ViV exp (v, w, 3,) .
Corollary 3.2.
a) V;exp(0,8€)=¢& i=172.

by FF.exp@, & 9)=V,exp@, ), i=1,2. »
¢) FPlV.,exp,w,§) =V.F exp v, & w), bilinear in (w, &).
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d) FJV.,exp@, & n)=rVF,exp @, », &, bilinear in (§, 7).
e) FV,exp(0,& % =0, i,j=1,2.

This follows at once from the differential equations. Note that the equation
in Theorem 3.4 is symmetric in Y, Y,.

The restriction of I/, exp to T,M @ T .M for some x € M is just the tangent
of exp, = exp|T .M. Using a) above and the inverse function Theorem there
is an open neighborhood D, C T.M of ox the zero vector at x, such that
exp, maps D, diffeomorphic into M. It follows that there is an open neigh-
borhood 2 < TM of the set of zero vectors in TM, such that (z, exp) maps
2 diffeomorphic onto an open neighborhood of the diagonal in M x M. Then
Viexp(@, -): T;M —-T,,,Mis a toplinear isomorphism for every ve 2, x
= r(v). We therefore have a map 9 : 2 — L(TM, TM) by

V,exp @, () -u) =F,exp (v, u),

which is a fibre preserving map of class C**, Similarly we define a map
A: 22— LY TM, TM) by

VV,exp (v, w, & =V,exp (v, 4v)- (w, §).

Then A is a fibre preserving map of class C*~* and maps actually into the
subbundle of bilinear symmetric maps by d) Corollary 3.1.

Lemma 3.1. ;
a) J0)=id, DS0) =0, IW)-v=v.
b) A40) =0, Aw)-(v,v) =0,ve2P.
c) FPl,exp(w,w, & =F,exp (v, DIW) - (w, &) + A®) - J@)- &, w)).
Proof. 9(0) is the identity by a) Corollary 3.1. If we replace v by v + tw
and take the derivative of both sides with respect to ¢, we obtain for t = 0:

VV,exp (@, u,w) ="V,F,exp (v, $@) -u, w)
+ Vyexp (v, D9() - (w, 1)) .

Then using Corollary 3.1 c) we get ¢) and putting v = O there and in the defin-
ing equation for A gives D,9(0) = A(0) = 0. We have F, exp (v, tv) = tdc,
where ¢ = exp tv. Therefore, fweput w=§, =v, u=§,=§=4§,=0 in the
differential equation in Theorem 3.4 wehave Y, =Y, =19¢, VY, =VY,= dc,
so the equation reduces to the Jacobi equation with zero initial conditions,
thus the solution is zero which means F,F, exp (v, v, v) = 0, so we have
A@) - (v, v) = 0. q.e.d.

The result of our effort is that a complete knowledge of the two first de-
rivatives of the exponential map is now stored in F,exp, V.V, exp and the
fibre maps ¢ and 4, both of them will play an important role in the theory
of manifolds of maps.
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4. Banach spaces of sections

Here N will denote a compact Hausdorff space, whose topology has a
countable base. Then N is normal and metrizable. We call N of class C7,
r>1, iff N is a C’-differentiable manifold with (or without) a boundary, else
we call N of class C° (for convenience only).

Let z : E— N be a vector bundle of class C5, 0 < s < r, where r is the class
of N. We denote by C*(x) the linear space of sections of class C* in 7 and we
will define a2 normable topology in C(z) in the following way :

We take any Finsler structure for =, t.i. a continuous function ||-|| : E— R,
which is an admissible norm on each fibre. Clearly Finsler structures exist
and any two are equivalent as N is compact. We then define a norm for
C%(x) by

[1€]lce = sup [|E@) ]| (P e N) .

For r > s > 1, we take a Finsler structure for the tangent bundle z : TN — N
and connection of class Cs-! for . Moreover if r > 2 we take a connection
of class C 2 for -. We then have an induced Finsler structure for

Li(z, ), ]2 1: [|4]| = sup |4 - (@;, - -, )|
(lo:ll=1,1<i<)).

This gives us a norm for C°(L/(z, z)) as before. For r > 2 we take the induced
conpection for Li(r, z) as in Proposition 1.2 and define

[i€lles = Zieo 17 llco

where 7 denotes covariant differentiation. Note that we need a connection
for L(z, ) only for s > 2. It is well known that Cs(x) with this norm is a
Banach space, and it can easily be shown that we get equivalent norms, if we
change the structures used for the construction (N being compact!).

Let B be the category of real Banach spaces and VB(N) the category of
vector bundles of class C” over N with fibres in 8. The set of morphisms
1 — p is then the Banachable space C"(L(x, p)). Then C* is a covariant functor
Cs : VB(N) — B, with

Ci: C(Lfx, p)) — L(C(x), C(p))

by C5.(A)-& = A-£. C, is a continuous linear map for any s < r as is easily
seen using Lemma 2. 1(1). We will consider C as inclusion map because of
naturality. Let 2[ be a full subcategory of % closed under the operations of
taking direct sums (products) and bounded linear maps. (e.g. A = B or finite
dimensional spaces.) Let VB(N, ) denote the category of vector bundles of
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class C™ over N with fibres in 2. By a section functor £ on VBN, ), we
mean a covariant functor

T: VBN, —-B

which assignes to every = € VB(N, 20) a Banachable space Z(x) of sections in
z and where the induced map of morphisms:

Ty 1 C(L(x, p)) — L(X(=), T(p))

is a continuous linear inclusion, ¥,(4)-£ = 4-£&. Given three section functors
Z,;, we will say, that the relation &, ¢ L(Z,, T,) holds, if for any two bundles
7, p from VB(N, %) we have a continuous linear inclusion

z1(L(71'> 0) C L(Zy(m), Sg(p))

defined as above by (4-&)(p) = A(p)-&(p). This means A4-£eZ;(p) for
A e T(L(w, p)), £ € T,(x) and taking any admissible norms, there is a constant
C>0s.t. ;

14 - &lig. < Cll 4]l €]l

In particular C'L C L(¥, ) is supposed to hold for any section functor ¥
and it then follows easily that the spaces Z(x @ p) and I(x) X Z(p) are top-
linearly isomorphic under the natural bijection.

We will call a section functor & satisfying the following three conditions a
manifold model:

1) We have a continuous linear inclusion &(z) ¢ C%r) for every e
VB(N, ).

2) BL c L(&, ©) holds.

3) LetE, FeVBWN,), @ c E an open subset projected onto N and
f:0 —F a fibre preserving map of class C7, then for every £e&(0) =
{£ e &(E) : &(N) C O} we have f o & e &(F) and the map

&(f) : &(0) — &(F)

thus defined is continuous.

Remarks. It follows from 1) and the fact that N is compact, that &(0) is
open in &(E). The compactness of N is needed in order that C°(0) is open.
It follows from 2) that &(E) is an S(L(E, E)) module and &(N,R) = &N X R)
is a Banach algebra of functions on N. Let f : ¢ — F be a map as above in
3). We call f of class (C7,C"*9), 0 < s < oo, iff f, = f |0, is of class Cs and
Dif : @ — L¥E, F) defined by DiF |0, = Df,, isof classC* for 0 < i < 5. In
particular f is of class (C7, C7), iff f is of class C* and any morphism is of
class (C7, C™*=).
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Lemma 4.1. Let the section functor & be a manifold model and f : O — F
a fibre preserving map of class (C7, C™*), then &(f) is of class C* and

D&(f) = &(Dsf) .

Proof. By induction on s > 0:

The Lemma is true by assumption for s = 0 and it is obviously sufficient
to prove it for s = 1, as the step from s to s + 1 then follows replacing f by
Dif and F by Ls(E, F). Now D,f : 0 — L(E, F) is of class C7, therefore

S(D,F) : &(0) — &(L(E, F)) C L(&(E), &(F))

is continuous by 3) and 2) above. Let £ ¢ &(0) and ¢’ C ¢ an open neigh-
borhood of £(N) such that each fibre @ is convex. Such a neighborhood can
easily be constructed using any Finster structure, as & is continuous. We define
f:0'DI — L(E, F) as the fibre preserving map:

8(x, y) = f "Df(x + 1y — X))t — Df(x),

then @ is of class C7, §(x, x) = O for all x¢ @ and
1) — X)) — Dof(x) - (0 — %) = 6(x, ») - (9 — %)
Therefore for any 5 e &(¢"):

&N () — S()E) — SDNE) - (n — & =SO)E, n) - (9 — ).

Now &(6)(, &) = 0 and &(6) is continuous by property 3) of &, it follows
that &(f) is differentiable at § with

DS(f)(E) = S(Df)(E) = Dyf 0§ .

5. Marifolds of maps

Let N and ¥ be as in §4 and & a manifold model on VBN, ). Let M be
a Banach manifold of class C**s, s > 3, modelled on Banach spaces in 9 and
admitting a connection of class C7*s~%, M is furthermore to be without
boundary.

Theorem 5.1. Under the assumptions above, there exists a unique Banach
manifold &S(N, M) of class C*~2, such that if exp: 0 - M, O C TM, is the
exponential map corresponding to any C™*°~% connection on M, 2 C 0 an
open neighborhood of the set of zero vectors in TM such that (c, exp)| D is a
diffeomorphism (§3), h: N — M a map of class C*. Then

& (exp) :S(h*2) — SN, M) by §1—»expo &,
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and is chart for S(N, M), called a natural chart centered at h.

Proof. Let E, = h*TM be the pull-back of  : TM — M by h and @, =
h*9@ < E,. Then E, is in VBN, N) and 2, is an open neighborhood of the
set of zero vectors in E,, such that with =, = A*z:

O = (mn,€XpP): 2, — N X M

is a diffeomorphim of class C* onto an open neighborhood U, of the graf of
hin N x M. We define &S(N, M) to be the set of maps g e C%N, M), such
that there is an 4 € C*(N, M) with graf (¢) < U, and @;* < (id, g) € &(2.,). We
then define &(U,) to be the set of the g’s with this property and

&(2:): S(U,) — &(2r) by 8(@:7)(9) = 037 = (id,g) -
This is a one-to-one mapping with
S(2;)7 = &(Pr): §1—expof.

Let fe C"(N, M) be another map, such that &U,) N &U,) is not empty.
Then U, N U, contains the graf of a continuous map, so ¢, = @; (U, N Uy)
is an open subset of E, projected onto N. Now

Ory= 05 0 @y: O, — E,
is a fibre preserving map of class (C7, C7+¢-?), therefore
@(@;l) o @(Q)h_) = @(@hj) . @(0,,) ad @(Ef)

and is of class Cs~* by Lemma 4.1. Hence the collection (&(U,), &(P;1)),
heCr(N, M) is an atlas of class C:~%for &(V, M) and defines a topology and
differentiable structure of class Cs=* on &V, M) the topology is easily seen
to be Hausdorff. The differentiable structure does obviously not depend on
the connection on M used, so long as it is of class C7*+*~7,

Remark. Inparticular, the Theorem holds for & = C*, 0 <k <r, k< o0,
Note, that if &(E) is defined to be the closed subspace of C%(E) vanishing on
the boundary of N (if not empty) for all £ e VB(N, ), then SN, M) con-
sists of all maps fe C* (N, M) such that f |dN ¢ C*(0N, M) and is rather dis-
connected.

Theorem 5.2. With s > 4 and else the same assumptions as in Theorem
5.1, we have a vector bundle:

B(t): BN, TM) - SN, M), B(z)(5) =ty

of class C*=*, which is naturally equivalent to the tangent bundle of S(N, M).
Moreover given any connection on M, let &(exp) : &(2,) — SN, M) be the
natural chart centered at he C'(N, M). Then
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S, exp) : &(21) X S(E,) — &N, TM)
@(VZ eXp)(ga 77) - VZ eXp ° (5, 77)

gives a trivialization of &(z) over &(exp) corresponding to the tangent trivi-
alization T&S(exp) under the bundle equivalence.

Proof. Given a Cr*s—%.connection on M we have a C7**% connection on
TM by Theorem 3.1., therefore &(V, TM) is a Banach manifold of class Cs—2.
We will use the natural atlas for the manifold &(V, TM) constructed by using
the induced connection on TM with exponential map expy.

We define Oh : N — TM as h followed by the zero section of ¢, then 04 is
of class C7 as well as A. We define a bundle equivalence I, : E, ®E, —» E,, =
(OR)*T*M, by

Ih(ép; vp) = (TT, T1s K)_l(gpa 09 77;;)

where K is the connection map for TM (§3). Then with @, = I.(2, D E,),
Dor = (mon, €Xpr): Do — N X TM is a diffeomorphism of class C7+s~2 and

[¢0h ° Ih](ép? 771:) = (P, 72 exp (§p7 vp))

using Corollary 3.1. &(@y) is then a chart for &V, TM) by definition.
Consider the diagram

-1 I o
T@(th) T&(@i7) @(l.@h) w &(En 29 &(@)) ZL) &,
o;t S(@,
oy ). oa,) @) &)

We claim &(T) = &(Dyy, o I1,) o TE(@;*) does not depend on 4 and is a diffeo-
morphism of class C*-¢. We have T&(@, )&, 1) = (&(Pn)(E), SD:Pr)E)-7)
using Lemma 4.1. Now exp (@,.,(£,)) = exp (£,) so

V,exp (Drs(5p), Dz@hf(sz:) “np) = V,exp &5 7)

and then by the above formula for @,, I, we are done. &(T) is of class Cs-3
as &(I,) is. This proves that &(z) is a vector bundle equivalent to the tangent
bundle as the above diagram is commutative and linear on fibres, where the
linear space structure of &(z)~(g) is of course the one inherited from sections
in g*TM, which is a bundle of class C® at least. This shows that we can extend
& to all bundles g*TM for g € &(N, M) and the above map &(T) is a toplinear
isomorphism of the tangent space over g with &(g*TM) so the bundle equi-
valence is natural. q.e.d.

We will in the following use I, and &(T) as identification maps. Note that
it was not a priori clear whether &(h*TM) coincides with the set of maps
EeS(N, TM)s.t. 7o & = h.
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Theorem 5.3. Let M, M’ be Banach manifolds of class C™+s, s > 4, and
else the same situation as in Theorem 5.1. Let 6 : M — M’ be a map of class
C+5-%, Then &(6): S(N,M)—-S(N,M"), g — 809, is of class C:-* and
T&(6) = &(16).

Here we have identified the tangent bundles with &N, T"M), T'&(@) =
&(T76), r < s — 2, follows then by induction.

Proof. Let heC"(N, M), and fe C"(N, M)s.t. o he&U,). Then §,, =
D7to (id, ) o @n : D5, — E, is a fibre preserving map of class (C7, C7+s-*) and
&(8,,) is the local representative of . Now by Lemma 4.1 &(6,,) is of class
C+% and D&(8,,) = &(D,0,;). Moreover we have exp’ o 8,,=40 o exp, so

Voexp o Tyfny, = T o V,exp, with T8, (&, 1) = (61,(§), D:0a,(§) - 1)

which shows in the light of Theorem 5.2 that &(T,8,,) is the local tangent of
S(0ny)-

Theorem 5.4. Let K be a connection map for the manifold M in Theorem
5.1. Then &(K): A1— K o A, is a connection map for S(N, M), the connec-
tion is of class C*~* and the local connector is given by

&(4y) 1 &(Zr) — LAS(EL), &(Ey) with A, = h*4  (§3).

The corresponding exponential map is just &(exp).

Proof. We have only to prove the local formula, as 4, : @, — LE,, E,) is
of class (C7, C**3-*) and we have a continuous linear inclusion &(L¥E,, E,)) C
L*(&(EL), &(E,)) applying the manifold model property 2) for & twice. So let
£e®(2,) and 9, &;, £, e S(E,) be the local components of some A e T*S(N, M) =
SN, T*M). Then

TIOAZVZCXPO(‘S’ 77)’
KOA=VZCXPO(E, C2)+V272exp°(€’77’C1)

=F,exp (&, &+ (A8 (9, L)),
as

K[, exp(&(p) + 1£:(0), 20) + 1) |1 = )
=V, exp (§(0), 7(P); 0, &i(p), Lo())

and then using Corollary 3.2 b) and the definition of 4 in §3. A somewhat
longer but more precise proof can be obtained by using I, expr and comput-
ing the connection with exp from Corollary 3.1 and the defining properties
of the connection map K,. By Lemma 3.1 b) we have &(4,)(¢£)-(¢,£) = 0,
which proves that £, 0 < t < 1, is a geodesic in this chart. This means that
&(exp) : £i— exp o ¢ is the exponential map. The natural charts are exactly
the “normal coordinates.”
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6. Bundles of sections over manifolds of maps

Let N, 2 € %, @ and M be given as in §5. Suppose we have a functor
A:U— W of class C7*s~* and covariant lets say. The corresponding map of’
morphisms:

24 : L(E, F) — LQA(E), (F))
«s then of class C7**-% and we have an induced functor
Ay : VBN, %) — VB, )

with Ay(E), = A(E,), peN (see Lang [6]) and the fibre preserving map A,
(given by 1, on each fibre) is of class (C7, C**~%). Moreover the map of
morphisms for 1 is

Avge = CT(Agn) : (A, B)1— 2un o (4, B) .

Theorem 6.1. Let N, 2, S, M, 2 be as above and let T be a section functor
on VB(N, ), such that SL C L(T, T) holds (§4). Then T can be uniquely
extended over the vector bundles A, (f*TM) for f e &(N, M) and the union of
all the Banach spaces T(Ax(f*TM)) is a vector bundle I(Ax(S(N, M)*TM))
of class C*~% over &(N, M).

Proof. For any continuous maps «, § : N — M, with e C*(U,) say § =
expo &, £ C(2,) C CY(a*TM) we will define a section:

1, € C(L(«*TM, B*TM))

by J.4(p) -5, =V, exp (§(P), 7). Then J,, is a toplinear isomorphism on each
fibre. Now let A, f e C*(N, M) with &U,) N &U,) = ¢. Then with 0, =
XU, N Ujy) we have

Dzdjnf : 0 — L(Es, Ef)

and this is a fibre preserving map of class (C7, C"*5~%), so &(D.d,,) is of class
Cs—* by Lemma 4.1. Moreover

EDDr)E) = ;)7 Jngy g=expoé

as Vyexpo (@rro&, (Dudrso08)-7) =F.expo (£, 7), for any £e&(0,). We
define

F(An(g*TM)) = {(Qgew o Ing) - 71 € Z(AN(EL))} .

This definition does indeed not depend on 4 as



190 HALLDOR I. ELIASSON

(Ruwodrg) - Aynw o (DDryo8)) = Ayn © Jrg
.and
Aew © L{Ey, E;) — LQAR(ER), 2x(E))
is of class (C7,C7+57%), s — 3 >0, so
As o (DoDry o §) € S(L(Ax(Er), An(E)))
which in turn is continuous linearly included in
L(ZQ~(Er)), T(Ax(E)))

by property &L < L(T, ¥). The local trivialization over the chart (S(U,),
B@;)) of &(N, M) is now given by the linear isomorphism 2,y o J;} in the
fibre over ¢ and defines a Banach space topology on each fibre. The transition
map between charts centered at /# and f, is the composite of

&) — S(L(W*TM, f*TM)) —
— S(LQAN(R*TM), 2x(F*TM))) —
— LEQy(W*TM)), T(Ax*TM))) ,

where the first map &(D,0,,) and the second &(1,y) are of class Cs~* and
the last one is a continuous linear inclusion. g.e.d.

The theorem holds in particular for ¥ = &. Observe that An(F*TM) =
f*14(TM), so the fibre over f consists of sections in the pull-back of the tensor
bundle of type 4 over M by f, t.i. tensor fields of type 4 along the map f. For
A = id, we get exactly the tangent bundle of &(V, M), the local trivialization
used here is moreover the same as used for &(N, TM) before. If X is a tensor
field of type 4 on M, t.i. a section in 1,(TM), we have an induced section
&*X in SUx(S(N, M)*TM)) defined by (&*X)(f) = f*X = X o f, which is
-of class Cs=2* if X is of class C7+s~2,

We note that 2 could just as well have been contravariant or of mixed
variance. Moreover if 1 is of several variables, we could replace some by fixed
bundles from VB(N, ) and the rest by pull-backs of TM by maps in SN, M).
However, as TN is not in VBV, ) if r < o, we will have to make some
-additional assumptions before applying the theorem.

Let r > 1 and denote by VB{N, ) the category of vector bundles of class
-Ct, 0 < i< r, over N with fibres in 2[. Section functors and manifold models
on VBYN, ) are defined just as before (replacing » by i). We will hanceforth
suppose & is a manifold model on VB (N, ). Let 2 : A X A - A be a
functor of class C7+5-* and ¥ a section functor on VB"~}(N, ¥) with SL C
L(Z, ). Then T(2x(TN, &(N, M)*TM)) is a vector bundle of class C+-3 over
&(N, M) with Z(Ax(TN, f*TM)) as the fibre over f. The proof is exactly the
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same as in previous theorem, replacing 2,y by 4.~ (Z, -), where I is the identi--
ty section in L(TN, TN).

Let Z,, T, be section functors in VBYN, A) and VB-Y(N, A) respectively.
We will call &, of higher degree than ¥, if the following holds: Given
E ¢ VBN, %) and any connection of class C¢~* on E, then we have a unique.
extension of the covariant derivative to a continuous linear map

V@ Z(E) = LN, E)) .

This means that C{(E) N ,(E) is dense in T,(E) and F : C{(E) N I(E) —»
Ci—(L(TN, E)) N LAL(TN, E)) is continuous, in the ¥, T, topologies. Obvi--
ously C* is of higher degree than C/ for £ > j. We will say that ¥, is contained
in ¥,, if we have a continuous linear inclusion ,(E) C T(E) for every vector
bundle E on which both T, and £, are defined.

Theorem 6.2. Let N be a compact manifold of class C*, r > 1, & a mani-.
fold model on VB™YN, %) and M a Barach manifold of class C™**, s > 3, as
before. Let  be a section functor on VB™*(N, ), such that SL C LT, ),
& is of higher degree than T and contained in . Then o : f|1—dfeC™?
(L(TN, f*TM)) for fe C"(N, M) can be extended uniquely to a section 8 of
class Cs—* in S(L(TN, SN, MY*TM)). Moreover in the local trivialization
centered at he C*(N, M) constructed above, the local representative 8, is-
given by

oh = &(85) + Va1 &(22) — TU(TN, H*TM)),

where IV, = h*l is the pull-back of the covariant derivation on M obtained’
from the connection used to construct the natural chart at h and

Iy = (B*9) - 0h, where 93 : 9 — L(TM,TM)
is the twist map from §3. Explicitly,
VZ eXP (Ep’ 79/7.('{-:p) " vp) = Vl eXP (gp, ah(p) : vp) .

Proof. F, is a covariant differentiation coming from a connection on E, .
of class C7~1, and has therefore by the assumption that & is of higher degree .
than ¥ a unique continuous linear extension to

Vot &S(E,) — (LN, E)) .

Moreover 9, is a fibre preserving map of class (C7, C***~%) and thus by Lemma
4.1 induces a C*~%-map:

&(9x) : &(2n) — &(L(TN, Ey)) C LL(TN, Ey))

where the inclusion is continuous linear by the assumption that & is contained.-
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in T. We have therefore only to prove that the local formula is correct for
sections of class C” in &(%,) as those are dense. So let f=exp £ with
£e&(2;) and of class C7; then

of(p) - v = [V exp o (x5, Tr, K) o TE]()
= V1 exp (§(p), oh(p) - v) + V. exp (§(p), V1r€(D) - v)
= Ju;(D) - (F:(8(P) - v + Fr5(P) - ¥)

which proves the local formula.

Theorem 6.3. Let the assumption be as in previous theorem and give M
a connection of class C*+*=2, Then the pull-back of the covariant derivation
-on M has a unique extension to a vector bundle map

F*: 8(S(N, My*TM) — I(L(ITN, SN, My*TM))

.of class C*~* provided s > 4. Moreover in the natural local trivialization cen-
tered at he C"(N, M) the local representative of * :

Vi &(2n) — L(S(Er), TLTN, Ey)))
.is given by the formula
VEE) =V + SDI)E) + S(4n)(E) - 3x§

where ¥V, = h*V, 9, and 3, are as in Theorem 6.2 and 4, is the local con-
.nector from Theorem 5.4.

Proof. D.§, and 4, are both fibre preserving maps of class (C7, C7*s~*) from
2, into L(E,, L(TN, E,)) and L¥E,, E,) — L(L(TN, Ez), L(En, L(TN, E,)))
respectively, so F7¥ is of class Cs—* and we have only to prove the local formula
under the additional hypothesis that & is of class C7. Let f=expo§, { =
Juy - 9= p,exp (&, 5) with ye C"(E;). Then

ViL=VF,exp{&, », dh,VE, V)
=FF,exp (&, 5, 0h) + V.V, exp (&, 5, VE) +V.exp (&, Vy)
=V,exp &,V + (Ds§&) - (9, 0h) + (Ae&)- ((§8)-0h+TE, 7))

by Lemma 3.1 ¢) and definition of 4. The local formula follows as we have
Dy3:(§) 1p = Ds3(€5) - (9, OR(D))-

Theorem 6.4. Given N, %, &, M as in Theorem 6.3 with r>2,s > 4 and
det both N and M have connections of class C™=* and C™*~* respectively. Let
L., Ly, Ty be section functors on VB~Y(N, ) and suppose SL C L(¥;, T,) for
i=1,2,3; 2L C L&, 2,); & is of higher degree and contained in T, and
%, is of higher degree than T,. Then taking the induced comnection for the
bundles LX(TN, {*TM), f e C"(N, M) (see §2), there is a unigue extension of
the covariant derivation to a vector bundle map
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P* . SLHTN, S*TM)) — TL** TN, S*TM))

of class C~* for k > 0. Moreover we have exactly the same local formula
with the obvious interpretation of 9, and A,.

Proof. 1t is an easy matter to check the local formula. We use the inclu-
sion:

LXEy, Ev) — L(L(IN, Ey), L(LXIN, E},), L**IN, E,))

to follow /4, and similar inclusions to follow 9, and D,9, to obtain the cor-
rect maps. Our assumptions are easily seen to ensure that F* is of class C—.

Corollaries for C*. Let N be a compact Riemannian manifold of class C=
and M a paracompact Banach manifold of class C*, without boundary and
with a C*-connection and a Finsler structure. Then for 0 < k < oo :

1. Cx(N, M) is a paracompact Banach manifold of class C=, with
C*(N, TM) as a tangent bundle space and admits a C>-connection and a
Finsler structure.

2. The connection on M induces a canonical C*-connection on C*(N, M),
such that C¥(exp) Iis the exponential map for C*(N, M), if exp denotes the
exponential map for M.

3. C¥L'(TN, C¥N, My*TM)) — C*(N, M) is a vector bundle of class C*
forO0<s <k 0<r< . _

4. The tangent derivative 3 : C*(N, M) — C**(L(TN, C¥(N, M)*TM)) is
a C= section in this bundle.

5. The connections on N and M induce C* sections in

L(C(L"(IN, C¥(N, My*TM)), C>-{L (TN, C¥N, My*TM)))

for r > 0, which are given by the covariant derivative on each fibre defined
as in §2, taking the induced connection for the pull-backs. _

6. We have an induced Finsler structure on C*(N, M) given on the fibre
C*(f*TM), f e C¥K(N, M), by

1€1les = 2 sup |7 1,

where the Riemannian metric on N and the pull-back of the Finsler structure

from M are used to obtain a Finsler structure for L{(TN, f*TM), i > 0.
Remark. If M is finite dimensional Riemannian manifold and & > % dim N,

we obtain the same results for the Sobolev chain H* using the properties of

Hs as a section functor (see [5]), except we replace the Finsler structure by
the Riemannian metric
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<t p>e=13 [<re pig>

1=0 o

where we integrate with respect to the Riemannian measure on N and the
Riemannian metrics for LY{TN, f*TM) are constructed from the Riemannian
metrics for TN and TM. A k-th order emergy function E, : H¥(N, M) - R
may be defined by ‘

=0

B =25 [Lrafe

and is of class C~ as is easily seen applying theorems 6.2-4. E; satisfies con-
dition C.
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